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The response of a shell conveying #uid to harmonic excitation, in the spectral
neighbourhood of one of the lowest natural frequencies, is investigated for di!erent #ow
velocities. The theoretical model has already been presented in Part I of the present study.
Non-linearities due to moderately large-amplitude shell motion are considered by using
Donnell's non-linear shallow-shell theory. Linear potential #ow theory is applied to describe
the #uid-structure interaction by using the model proposed by PamKdoussis and Denise. For
di!erent amplitudes and frequencies of the excitation and for di!erent #ow velocities, the
following are investigated numerically: (1) periodic response of the system; (2) unsteady and
stochastic motion; (3) loss of stability by jumps to bifurcated branches. The e!ect of the #ow
velocity on the non-linear periodic response of the system has also been investigated.
PoincareH maps and bifurcation diagrams are used to study the unsteady and stochastic
dynamics of the system. Amplitude modulated motions, multi-periodic solutions, chaotic
responses, cascades of bifurcations as the route to chaos and the so-called &&blue sky
catastrophe'' phenomenon have all been observed for di!erent values of the system
parameters; the latter two have been predicted here probably for the "rst time for the
dynamics of circular cylindrical shells.

( 2000 Academic Press
1. INTRODUCTION

Shells containing #owing #uids are widely used in engineering applications, in which they
are subject to manifold excitations of di!erent kinds, including #ow excitations. Usually,
these shells are made as thin as possible for weight and cost economy; therefore, their
response to such excitations is of great interest.
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In almost all past studies, linear shell theory has been used, which is accurate only for
vibration amplitudes signi"cantly smaller than the shell thickness. In particular, PamKdoussis
and Denise [1] considered both clamped and cantilevered shells subjected to axial #ow and
utilized a travelling wave-type solution, nevertheless satisfying the pertinent boundary
conditions, along with a separation of variables method to solve the boundary value
problem for the linear #uid}structure interaction. Weaver and Unny [2], on the other hand,
investigated the stability of simply supported shells by means of the Fourier transform
method to solve the #uid}structure interaction. PamKdoussis et al. [3] extended this method
to coaxial cylindrical shells. HoraH c\ ek and Zolotarev [4] investigated the e!ect of di!erent
boundary conditions at the shell ends. In the papers [1}4], not only shell stability but also
the linear dependence of the natural frequencies of the system on the #ow velocity are
investigated. These results are also obtained in Part I [5] of the present study.

Other than reference [5], the only other study related to large-amplitude vibrations of
shells with #ow is due to Selmane and Lakis [6]. They consider the non-linear free
vibrations of open and closed circular cylindrical shells with #uid #ow by using a hybrid
"nite element method. The formulation is based on the non-linear Sanders}Koiter shell
theory, so that structural non-linearities are taken into account. Results show only the e!ect
of vibration amplitude on vibration frequencies. Only one set of results is given for free
vibrations of an open circular cylindrical shell with #owing #uid, showing the non-linearity
to be either hardening or softening, depending on the circumferential wavenumber n. No
results are presented by Selmane and Lakis [6] for closed circular cylindrical shells with
#owing #uid, and the response of a shell to harmonic excitation is not investigated, nor are
companion mode participation and the e!ect of structural damping.

In the present study, the response of a shell conveying #uid to harmonic excitation, in the
spectral neighbourhood of one of the lowest natural frequencies, is investigated for di!erent
#ow velocities. The theoretical model has already been presented in Part I [5] of the present
study, where stability in the absence of extraneous, forced excitation is investigated. In
particular, non-linearities due to moderately large-amplitude shell motion are considered
by using Donnell's non-linear shallow-shell theory, taking into account the e!ect of viscous
structural damping. Linear potential #ow theory is applied to describe the #uid}structure
interaction by using the model proposed by PamKdoussis and Denise [1], as presented in
reference [5]. The system is discretized by Galerkin's method, and is investigated by using
a model involving seven degrees of freedom (d.o.f.), allowing for travelling wave response of
the shell and axisymmetric shell contraction.

Since considerable time has elapsed since the appearance of Parts I and II of this study
[5, 7], it is perhaps useful to the reader to summarize the principal "ndings of the research in
Parts I}III [5, 7, 8]. Speci"cally, in terms of the response to forced excitation, it has been
found that axisymmetric modes in the modal expansion for the solution of the problem are
extremely important: thus, while taking into account the fundamental axisymmetric mode
may yield a hardening behaviour, taking more modes in that series into account
dramatically changes the behaviour to softening [7]. In terms of the response of the system,
it was found that companion modes are very important in the overall response of the system
[5]. Speci"cally, with the aid of the PamKdoussis and Denise #uid-dynamical model, it was
found that loss of stability by divergence is very strongly subcritical. Furthermore, it was
found that the de#ected shape of the buckled shell rotates helicoidally about the axis with
increasing #ow velocity.t Signi"cantly, this solution emerges only provided that companion
tThis is a good place to clarify the highly condensed statement made in this regard in reference [5]. The solution
branch &&3'' concerned (see Figure 8 in reference [5]) is unstable in the sense that, when perturbed by a small
increment in velocity, it is unstable. However, for each steady value of the #ow velocity, the solution is stable.
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modes are taken into account. Finally, for at least the shell investigated, all solutions were
found to be static [5], i.e., "xed points in phase space, which suggests that the
post-divergence coupled-mode #utter obtained by linear theory and con"rmed
experimentally may correspond to dynamic divergence rather than #utter. Nevertheless,
new calculations for the thinner shell, presented in this paper, show that periodic solutions
may be possible in some cases for large #ow velocities, but they are unstable.

2. RESULTS AND DISCUSSION

Numerical results are carried out for the simply supported (N
x
"0) circular cylindrical

shell with #owing water and external excitation already investigated in Part I}III [5, 7, 8] of
the present study, having the following characteristics: ¸/R"2, h/R"0)01,
E"206]109 Pa, o"7850 kg/m3, o

F
"1000 kg/m3 and l"0)3. Here ¸ is the length of

the shell, R its radius and h its wall thickness, E is the Young's modulus, o the shell density,
and l the Poisson ratio, o

F
is the #uid density. The mode considered is n"5, m"1,

with a damping ratio f
1,n

"0)01, a linear radian frequency for zero #ow velocity
u

1,n
"2n]106)69 rad/s and a generally variable amplitude of the non-dimensional

external modal excitation fI"f
n
/Mhu2

1,n
m

1
[2/(n¸)], where f

n
is the amplitude of the

modal excitation de"ned in reference [5]. The #uid}structure interaction model of
PamKdoussis and Denise [1, 5] is used. A non-dimensional #uid velocity < is introduced for
convenience, de"ned as in reference [2] by <";/M(n2/¸)[D/(oh)]1@2N, where ; is the
dimensional #ow velocity, and D"Eh3/[12(1!l2)] is the shell #exural rigidity. It is to be
noted that the linear radian frequency varies with the #ow velocity <, as already
investigated (see Figure 2 in Part I of the present study [5]), and is here denoted by u

V
, i.e.,

u
V

is a function of <.

2.1. PERIODIC RESPONSE

The "rst part of the analysis is performed by means of the AUTO software [9] for
continuation of the solution and bifurcation of non-linear ordinary di!erential equations,
which has previously been used in Part I [5] to study stability and bifurcation of the
equilibrium. It was observed that the undisturbed equilibrium position of the system
undergoes a strongly subcritical bifurcation at <"3)33, such that a stable bifurcated
position exists as of <"1)31. Therefore, for #ow velocity 1)31(<(3)33 the undisturbed
equilibrium position is linearly stable, but other equilibrium positions coexist. This
bifurcation is associated with the (5, 1) mode, i.e., a mode with n"5 circumferential waves
and m"1 longitudinal half-wave.

Initially, an external harmonic excitation fI"0)03 with frequency close to the natural
frequency of the mode (5, 1) is considered; this corresponds to the problem studied in Parts
II and III [7, 8] of the present study for quiescent #uid (<"0). In Figure 1, the amplitude of
oscillation of the Lagrangian co-ordinate A

1,n
is shown for several values of the #uid

velocity, in the case of no companion mode participation, i.e., B
1,n

"0 (see Parts I and II).
The dynamical behaviour shows a softening-type non-linearity for the entire #ow velocity
range explored. It is interesting to note that the maximum amplitude of oscillation varies
with the axial #ow velocity< and reaches a minimum around<"1)3, that is just before the
appearance of the bifurcated equilibrium position (<"1)31). Thus, increasing the #ow
velocity from <"0 to 1)3, the vibration amplitude decreases. After this value, the
amplitude increases a great deal with the #ow velocity. Therefore, it seems that the e!ect of



Figure 1. Frequency}response curves for the driven mode without companion mode participation at di!erent
#ow velocities <; fI"0)03.
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the #ow is to reduce the amplitude, the non-linearity and the frequency of the system
response up to the velocity corresponding to the instability threshold under disturbance;
after this velocity, the frequency of the response is still reduced, but amplitude and
non-linearity of the response increase.

In Figure 2, the case of <"1 and fI"0)03 is analyzed in detail, i.e., the presence of the
companion mode is taken into account. The single-mode response, i.e., in the absence of
companion mode participation, is typical of softening-type non-linearities. Following
branch 1, stability is lost at u/u

V
"0)9593 in a folding; then, the system regains stability at

u/u
V
"0)9525 due to the presence of a second folding. At u/u

V
"0)9579 the single-mode

response bifurcates and loses stability. After that, in the range u/u
V
3(0)9579, 1)005), the

companion mode B
1,n

is excited (see Figure 2(b)). In a narrow region u/u
V
3(0)96, 0)9734)

both companion mode and single-mode orbits are unstable, which means that the actual
orbit is not periodic. Typically, in this region an amplitude modulation due to beating
phenomena is present. The main di!erences with respect to the case for<"0 are: (1) the tip
of the response of the driven mode A

1,n
is rounded and presents an enlarged stable portion,

and (2) the companion mode B
1,n

reaches larger amplitude.
When the #ow velocity < is increased to 1)3, corresponding to the last point of safe

stability under disturbance [5], the vibration amplitude reaches its minimum; moreover, the
amplitude}frequency relationship, shown in Figure 3, assumes a di!erent shape as
compared to those obtained for di!erent #ow velocities and the same excitation amplitude.
In fact, no folding is anymore present on branch 1, and branch 2 is always stable in the
region of its existence. The response still presents a slightly softening-type behaviour.



Figure 2. Frequency}response curve with companion mode participation for <"1 and fI"0)03. (a) Maximum
of A

1,n
(t)/h; (b) maximum of B

1,n
(t)/h; (c) maximum of A

2,n
(t)/h; (d) maximum of B

2,n
(t)/h; (e) maximum of A

1,0
(t)/h;

(f) maximum of A
3,0

(t)/h; (g) maximum of A
5,0

(t)/h: **, stable solutions; } }}, unstable solutions.
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Figure 3. Frequency}response curves with companion mode participation for<"1)3 and fI"0)03:**, stable
solutions; } } }, unstable solutions.
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In Figure 4, the case of <"2 and a 10-fold augmented excitation amplitude fI"0)3 is
studied. The single-mode response loses stability at u/u

V
"0)8679 in branch 1, through

a folding. Then, it regains stability at u/u
V
"0)775 via a second folding. At u/u

V
"0)7955

the orbit loses stability for the second time and remains unstable up to the bifurcation point,
u/u

V
"1)0045, where a solution branch including the companion mode arises. Companion

mode participation is present in the region u/u
V
3(0)1426, 1)0045). This branch of the

periodic orbit has a pitchfork bifurcation at u/u
V
"0)6886; from this point, a third

bifurcated branch arise, which ends at u/u
V
"0)6818, where it merges with the second

branch. It should be noted that the second branch loses stability at u/u
V
"0)6470, through
Figure 4. Frequency}response curve with companion mode participation for <"2 and fI"0.3. (a) Maximum
of A

1,n
(t)/h; (b) maximum of B

1,n
(t)/h; (c) maximum of A

2,n
(t)/h; (d) maximum of B

2,n
(t)/h; (e) maximum of A

1,0
(t)/h;

(f) maximum of A
3,0

(t)/h; (g) maximum of A
5,0

(t)/h: (h) particular of (a); (i) particular of (b):**, stable solutions;
}} }, unstalbe solutions.



Figure 4. Continued.
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a torus bifurcation, and that the third branch loses stability at u/u
V
"0)6458, via

a period-doubling bifurcation. It is interesting to note that the periodic orbit including
companion mode participation displays a di!erent shape when compared with the classical
cases of cylindrical shells without #ow and with cases involving smaller #ow velocity. In
fact, in this case, the second branch ends at u/u

V
"0)1426, where the interaction with the

bifurcated equilibrium position destroys the periodic orbit and does not permit
a continuation of the solution.

The dynamics of the system around the bifurcated equilibrium position A
1,n

"0,
B
1,n

"0, A
2,n

"0, B
2,n

"6)17524, A
1,0

"1)68391, A
3,0

"1)32631, A
5,0

"!0)696408
is analyzed for <"2, fI"0)1 and the results are shown in Figure 5. The "rst branch
represents almost the whole of the single-mode response because companion mode
participation is small. This branch loses stability at u/u

V
"2)367 through a folding (see

Figure 5(a)). When companion mode participation becomes e!ective, i.e., when the "rst
branch bifurcates at u/u

V
"2)245 and the second branch (branch 2) arises, the system

response moves away from the initial equilibrium position. In particular, the second branch
ends in the neighbourhood of a second bifurcated equilibrium position where A

1,n
, B

1,n
and

B
2,n

are close to zero and A
2,n

is close to $6)17; around this equilibrium position the
periodic orbit regains stability. It is to be noted that the resonance frequency for small
vibration amplitudes around the bifurcated position studied is about 2)5 times the linear
frequency u

V
for oscillations around the undisturbed position for the same #ow velocity. It

means that the system presents higher resonance frequencies on the bifurcated branches, i.e.,
it is sti!er.



Figure 5. Frequency}response curve with companion mode participation starting from a bifurcated position for
<"2 and fI"0)1. (a) Maximum of A

1,n
(t)/h; (b) maximum of B

1,n
(t)/h; (c) maximum of A

2,n
(t)/h; (d) maximum of

B
2,n

(t)/h; (e) maximum of A
1,0

(t)/h; (f) maximum of A
3,0

(t)/h; (g) maximum of A
5,0

(t)/h:**, stable solutions; } } },
unstable solutions.
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2.2. UNSTEADY AND STOCHASTIC MOTION

In this section, direct numerical simulations are performed by using the adaptive step-size
fourth}"fth order Runge}Kutta method. The aim is to investigate the dynamic behaviour of
the system when periodic solutions lose stability. Di!erent kinds of behaviour have been
found: (1) periodic harmonic and subharmonic response: (2) periodic response with
amplitude modulation; (3) chaotic motion; (4) jumps from undisturbed positions to
bifurcated ones during oscillation.

The "rst tool used here to investigate parametrically the dynamic behaviour of the system
is the PoincareH map and the corresponding bifurcation diagram. In the case of external
periodic excitation and in the presence of damping, the PoincareH map coincides with the
¹-map, which is obtained by sampling the time history at the frequency of the external
excitation. Because the dimension of the system is larger than two, PoincareH sections are
projected on the planes spanned by each d.o.f. and its velocity, for example (A

1,n
, AQ

1,n
).

When a parameter of the system varies, generally, PoincareH maps change with a certain
continuity, in the case of regular motion. Therefore, it is interesting to follow the evolution
of the map when a parameter is varied. In order to represent the evolution of the PoincareH
map, a projection of a single Lagrangian co-ordinate onto a plane is usually e!ected; such
a sequence of projections is also called a bifurcation diagram of the PoincareH maps.

In Figure 6, such a bifurcation diagram is shown. The excitation frequency is close to the
linear frequency (including the #ow e!ect) of mode (5, 1) for <"2, i.e., u/u

V
"1)07446,

with the companion mode not being active. The variable parameter in this case is the
excitation amplitude fI . For small amplitude of the excitation, a sequence of single points is
observed, i.e., a single point is obtained for any "xed fI . This point corresponds to periodic
response with the same frequency as the external excitation. When fI"0)1444 the periodic
orbit loses stability, and an amplitude-modulated motion takes place. At fI"0)2519 the
amplitude modulation orbit loses stability and a 5¹ orbit arises, where a 5¹ orbit means
that the system response is periodic with a period 5 times larger than the excitation period
¹. The 5¹ orbit loses stability for fI"0)2612, where a succession of chaotic and multiple-¹
periodic orbit regions starts. This region ends at fI"0)2940, and a stable 9¹ orbit occurs, up
to fI"0)3125. Increasing the force, another chaotic region arises, and this chaotic orbit
collapses at fI"0)3359; at this value of fI , the energy furnished to the system is large enough
to allow a jump, which leads the system to orbit around the bifurcated position with
Figure 6. Bifurcation diagram without companion mode participation for u/u
V
"1)07446 and <"2.

(a) A
1,n

(t)/h; (b) enlarged view of (a). P, simple periodic motion; M, modulated amplitude; 5T, 9T and mT, periodic
motion of multiple period; C, chaotic response.
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a simple orbit of period ¹. In Figure 6(b), &&P'' indicates simple periodic motion, &&M''
amplitude-modulated response, &&5T'', &&9T'' and &&mT'' are used for periodic obit of multiple
period and &&C'' is the label for chaotic response.

It is interesting to analyze the e!ect of companion mode participation on the dynamics of
the system. To this end, the previous analysis was repeated by perturbing slightly the
companion mode. In Figure 7, the bifurcation diagrams for all seven d.o.f.s are presented; in
particular, Figure 7(a, h) shows the equivalent of Figure 6(a, b). It is seen that the periodic
orbit loses stability at fI"0)1444, while the companion mode is not excited up to fI"0)2057;
then an amplitude-modulated orbit emerges, and it collapses into a chaotic orbit at fI"0)27.
A jump occurs at fI"0)3364, where the chaotic orbit around the undisturbed "xed point
collapses into periodic orbit around the bifurcated equilibrium position. In Figure 7(h), &&P''
indicates simple periodic motion, &&M'' amplitude-modulated response, and &&C'' chaotic
motion.

The previous results show that the force level fI"0)3 is interesting for the study of the
system dynamics and therefore a further investigation is performed for this value of fI , this
time varying the excitation frequency. In Figure 8, the bifurcation diagram is shown in the
frequency range u/u

V
3(0)53, 1)13). The companion mode is perturbed from zero and

participates in the response. Two quite interesting frequency intervals are found:
u/u

V
3(0)7631, 0)7717) and u/u

V
3(1)0432, 1)123). When the excitation frequency decreases

and reaches the value 0)7717, the periodic orbit bifurcates (see Figure 8(h, i)) and the system
moves on a new periodic orbit which loses stability at u/u

V
"0)7640. Then a 3¹ periodic

orbit arises; this loses stability and a chaotic orbit is present in the narrow region
u/u

V
3(0)7631, 0)7634). When the excitation frequency grows to u/u

V
"1)0432, the

periodic ¹ orbit loses stability and is replaced by an amplitude-modulated orbit (see Figure
8( j, k)), which is stable up to u/u

V
"1)0583. Then, the period 9¹ orbit, already met in the

previous results, appears. This orbit suddenly loses stability at u/u
V
"1)0643 and this gives

rise to a chaotic region. This sudden change of behaviour is often called a &&blue sky
catastrophe''. The companion mode participation is present for 1)073(u/u

V
(1)083.

Then, at u/u
V
"1)083, the chaotic orbit is replaced by an amplitude-modulated motion,

the nature of which changes at u/u
V
"1)105. Finally, an unexpected jump is present at

u/u
V
"1)123. After this value, the system behaviour becomes a regular periodic motion

around the bifurcated position. In Figure 8(h, j), &&P'' indicates simple periodic motion, &&M''
amplitude-modulated response, &&3T'' and &&9T'' are used for periodic orbit of multiple
period, and &&C'' denotes chaotic response.

The three previous bifurcation diagrams indicate several sets of system parameters for
which complex dynamics takes place. These regions should be investigated further. To this
end, time histories, power spectra and PoincareH maps will be shown for the most interesting
parameter values.

In order to analyze the 9¹ periodic orbit, the system behaviour is investigated for the
following parameter values: u/u

V
"1)07446, fI"0)3 and <"2; note that the 9¹ orbit is

present when the companion mode is not excited. In Figure 9, time histories, phase
portraits, a power spectrum and a PoincareH map are shown. The time histories show an
amplitude-modulated motion, which actually corresponds to a closed trajectory in the
phase plane. Note that the phase plots are shown for a very long time history, i.e., the
integration time is more than 10 times the excitation period. Nevertheless, the phase
trajectory does not "ll the intervening phase space; this behaviour is typical of periodic or
quasiperiodic motions, but not chaotic ones. The power spectrum in Figure 9(e) shows that
the frequency peaks are not incommensurable; speci"cally, the fundamental frequency of
the signal is 1/9th of the excitation frequency and the frequency distance d between the
peaks is equal to d"0)2388u

1,n
. Moreover, the maximum energy of the signal is located in



Figure 7. Bifurcation diagram with companion mode participation for u/u
V
"1)07446 and <"2. (a) A

1,n
(t)/h;

(b) B
1,n

(t)/h; (c) A
2,n

(t)/h; (d) B
2,n

(t)/h; (e) A
1,0

(t)/h; (f) A
3,0

(t)/h; (g) A
5,0

(t)/h; (h) enlarged view of (a): P, simple
periodic motion; M, modulated amplitude; C, chaotic response.
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Figure 8. Bifurcation diagram with companion mode participation for fI"0)3 and <"2. (a) A
1,n

(t)/h;
(b) B

1,n
(t)/h; (c) A

2,n
(t)/h; (d) B

2,n
(t)/h; (e) A

1,0
(t)/h; (f) A

3,0
(t)/h; (g) A

5,0
(t)/h; (h) enlarged view of (a) for

0)75(u/u
V
(0)78; (i) enlarged view of (b) for 0)75(u/u

V
(0)78; (j) enlarged view of (a) for 1(u/u

V
(1)15; (k)

enlarged view of (b) for 1(u/u
V
(1)15: P, simple periodic motion; M, modulated amplitude; 3T and 9T, periodic

motion of multiple period; C, chaotic response.
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Figure 8. Continued. (see caption on page 653).
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correspondence to the excitation frequency. Figure 9(f) shows the PoincareH map projected
on the (A

1,n
, AQ

1,n
) plane, where nine isolated points are present, proving that the motion is

not quasiperiodic but a 9¹ periodic orbit.
The previous case is now considered with companion mode participation. In Figure 10,

time histories, phase portraits, power spectra and PoincareH maps are shown. The time
history given in Figure 10(a) shows an amplitude-modulated motion, which is qualitatively
similar to the previous case. Note that the companion mode, Figure 10(b), is excited and
gives rise to an irregular motion. The phase plots show that the phase trajectory "lls the
phase space, which is a typical behaviour of unsteady motions. This situation is more clear
in the power spectra of A

1,n
and B

1,n
, Figure 10(e}f); the spectra are highly polluted, i.e., the

signal energy spreads around each peak, over the whole spectrum. The fundamental
frequency of the signal is still visible at 1/9th of the excitation frequency in Figure 10(e) and
the frequency separation between the peaks is still equal to d"0)2388u

1,n
; moreover,

if Figures 10(e) and 9(e) are superposed, the peaks coincide. This indicates that the
chaotic trajectory with companion mode participation is a perturbation of the 9¹ periodic
orbit previously shown in Figures 9(a}d) without companion mode participation. Another
interesting phenomenon is observed by comparing Figures 10(e) and 10(f); in fact, the peaks
in the response of the companion mode B

1,n
are shifted to lower frequencies by d/2

with respect to peaks in the response of A
1,n

. Figures 10(g}h) show the PoincareH maps
projected on planes spanned by (A

1,n
, AQ

1,n
) and (B

1,n
, BQ

1,n
), where a strange attractor is

found to be present. It is interesting to note that the presence of the companion mode
destroys the periodic orbit and causes the onset of chaotic motion. However, this chaotic



Figure 9. Response of the system without companion mode participation for fI"0)3, u/u
V
"1)07446 and

<"2. (a) Time response of the generalized co-ordinate A
1,n

(t)/h; (b) time response A
2,n

(t)/h; (c) phase portrait of
A

1,n
(t)/h; (d) phase portrait of A

2,n
(t)/h; (e) power spectrum of A

1,n
(t)/h; (f) PoincareH map in the plane

MA
1,n

(t)/h, AQ
1,n

(t)/(hu
V
)N.
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trajectory is a perturbation of the unstable 9¹ periodic orbit, as clari"ed by the
power-spectral analysis.

A second interesting case is obtained for fI"0)3, <"2 and around the frequency ratio
u/u

V
"0)7635. Only the PoincareH maps are shown here, for brevity. Figure 11 shows that

for u/u
V
"0)7635 the system dynamics is governed by a 3¹ periodic orbit with companion

mode participation. Figures 12 and 13 are for u/u
V
"0)7634 and 0)7632, respectively, and

show the chaotic attractors that appear after the collapse of the periodic orbit. The maps are
quite complex; in particular, they incorporate several limit cycles and at least two saddle



Figure 10. Response of the system with companion mode participation for fI"0)3, u/u
V
"1)07446 and <"2.

(a) Time response A
1,n

(t)/h; (b) time response B
1,n

(t)/h; (c) phase portrait of A
1,n

(t)/h; (d) phase portrait of B
1,n

(t)/h;
(e) power spectrum of A

1,n
(t)/h; (f) power spectrum of B

1,n
(t)/h; (g) PoincareH map in the plane

MA
1,n

(t)/h, AQ
1,n

(t)/(hu
V
)N; (h) PoincareH map in the plane MB

1,n
(t)/h, BQ

1,n
(t)/(hu

V
)N.
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Figure 11. PoincareH maps for fI"0)3, u/u
V
"0)7635 and <"2: (a) A

1,n
(t)/h; (b) B

1,n
(t)/h.
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nodes. Note that the analysis of multi-dimensional PoincareH maps is quite complex and is
beyond the scope of the present work. Here it is just interesting to observe that the
system undergoes quite di!erent types of dynamical behaviour; simple periodic motion,
multi-¹ motions and chaotic dynamic can appear, by changing slightly the system
parameters.

Lastly, in Figure 14, the bifurcation diagram versus the axial #ow velocity is shown
for fI"0)3 and u/u

V
"1)07446. The companion mode becomes active for

0(<(1)903 and 1)991(<(2)059. A periodic motion of period ¹"2n/u is present for
<3(0, 1)818) and <'2)15. An amplitude- modulated motion takes place in the range
<3(1)818, 1)847); the limit cycle in the PoincareH map loses stability for <"1)847 and is
replaced by a chaotic attractor. The chaotic orbit loses the companion mode participation
for <"1)903. Another chaotic region with active companion mode arises in the range
<3(1)991, 2)043); it is replaced by a limit cycle attractor at <"2)043 which is stable up to
<"2)15.

2.3. LOSS OF STABILITY BY JUMPS TO BIFURCATED BRANCHES

The last investigation performed is related to the loss of stability by jumps from the
undisturbed positions to the bifurcated branches for #ow velocity 1)31(<(3)33 with
harmonic excitation. This phenomenon gives a violent buckling (divergence) of the shell
that usually causes failure in applications. Direct numerical simulations have been
performed by using the adaptive step-size-fourth}"fth order Runge}Kutta method for a few
#ow velocities, varying the amplitude and the frequency of the excitation fI . It has been found
that, for <"2, an excitation amplitude fI"0)15 at frequency u/u

V
"0)8 is necessary to

obtain the jump shown in Figure 15. It is interesting to observe that only the driven mode
A

1,n
is directly excited: however, after a while, the system displays a quite regular helicoidal

motion and "nally reaches the bifurcated branch. If the amplitude is reduced or the
frequency changed, then no jumps are obtained for fI"0)15.

Similarly, for <"2)8, it is necessary to have an excitation amplitude fI"0)048 at
frequency u/u

V
"0)79 to obtain the jump (see Figure 16). By reducing the amplitude or

changing the frequency for fI"0)048, again no jumps are obtained. Therefore, when the
non-dimensional #ow velocity < is increased from 2 to 2)8, the excitation amplitude
necessary for the jump is reduced by a factor of three.



Figure 12. PoincareH maps for fI"0)3, u/u
V
"0)7634 and <"2: (a) A

1,n
(t)/h; (b) B

1,n
(t)/h; (c) A

2,n
(t)/h;

(d) B
2,n

(t)/h; (e) A
1,0

(t)/h; (f ) A
3,0

(t)/h; (g) A
5,0

(t)/h.
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Figure 13. PoincareH maps for fI"0)3, u/u
V
"0)7632 and <"2: (a) A

1,n
(t)/h; (b) B

1,n
(t)/h; (c) A

2,n
(t)/h;

(d) B
2,n

(t)/h; (e) A
1,0

(t)/h; (f ) A
3,0

(t)/h; (g) A
5,0

(t)/h.
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Figure 14. Bifurcation diagram with companion mode participation for fI"0)3 and u/u
V
"1)07446.

(a) A
1,n

(t)/h; (b) B
1,n

(t)/h; (c) A
2,n

(t)/h; (d) B
2,n

(t)/h; (e) A
1,0

(t)/h; (f ) A
3,0

(t)/h; (g) A
5,0

(t)/h: P, simple periodic motion;
M, modulated amplitude; C, chaotic response.
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Figure 15. Time response for fI"0)15, u/u
V
"0)8 and <"2: (a) Axial mode m"1; (b) axial mode m"2.
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3. ADDITIONAL RESULTS FOR STABILITY OF A THINNER SHELL

In section 2 of the present paper and in Part I of this study [5], a circular cylindrical shell
with thickness ratio h/R"0)01 is considered. Here the same shell but with a 10-fold reduced
thickness ratio, h/R"0)001, is considered in order to further investigate the possibility of
periodic solutions (post-divergence coupled-mode #utter) for the system without external
excitation. Figures 17 and 18 are analogous to Figures 4 and 8, respectively, in reference [5].
In particular, Figure 17 is for a solution with in-phase asymmetric modes (B

1,n
"B

2,n
"0),

and Figure 18 with asymmetric modes orthogonal in h (B
1,n

"A
2,n

"0), as already
discussed [5]. So far as divergence is concerned, the curves are qualitatively similar to those
obtained in Part I [5] for a thicker shell, with the main di!erence being that now the linear
divergence is predicted for #ow velocity <"7)77A while the minimum #ow for the onset of
divergence (given a su$cient disturbance, actually quite large, in this case) is <"1)41; it
means that divergence can be possible for a #ow velocity 5)5 times less than that computed
A It may appear strange that the crictical < here is larger than that for the thicker shell, but this is because we
have used Weaver and Unny's non-dimensionalization scheme; the dimensional #ow velocity is in fact smaller for
the thinner shell.



Figure 16. Time response for fI"0)048, u/u
V
"0)79 and <"2)8: (a) Axial mode m"1; (b) axial mode m"2.
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by linear theory! Actually, the shell displacement associated with divergence in this case is
so large that the shell theory used cannot give accurate results.

It is interesting to observe that for <*12)6 periodic solutions are possible, see Figures
17(c}e). In particular, in Figures 17(c}d) the branches corresponding to the maximum value
of the generalized co-ordinate are indicated by the superscript @ (e.g., 4@) and those
corresponding to the minimum value of the generalized co-ordinate are indicated by the
superscript A (e.g., 4A). However all the solutions obtained by using the AUTO software [8]
are unstable. It means that, for large #ow velocity, periodic solutions are in principle
possible, also without external excitation, but they do not appear to be simple periodic
solutions; they could be quasiperiodic, amplitude-modulated or even chaotic solutions.
Actually, direct integration of the equations of motion performed by using an adaptive
step-size Runge}Kutta integration scheme in the range 20*<*12)6 shows that, for
di!erent initial conditions, the system is always subject to coupled-mode divergence with
asymmetric modes orthogonal in h, i.e., the stable attractive solution is branch &&3'' of Figure
18 which is a static solution. The response of this thinner shell to harmonic excitation is
expected to be even more complicated than that in the previous section for large <.



Figure 17. Non-oscillatory and periodic oscillatory solutions without external excitation versus the non-
dimensional #ow velocity <; in-phase modes:==, stable non-oscillatory branches; } } }, unstable non-
oscillatory branches;**, unstable oscillatory solutions: (a) amplitude of the "rst longitudinal mode A

1,n
/h; (b)

amplitude of the second longitudinal mode A
2,n

/h; (c) enlarged view of (a); (d) enlarged view of (b); (e) frequency of
oscillatory solutions versus <.
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Figure 17. Continued.

664 M. AMABILI E¹ A¸.
4. DISCUSSION AND CONCLUSIONS

As the discussion of the individual "gures in section 2 has perforce been quite detailed,
and perhaps tedious, here some of the overall features of the results are discussed, hopefully
giving a broad appreciation of what has been obtained.

The "rst observation is that, as the #ow velocity is increased from zero, (1) the degree of
softening of the response diminishes, up to the point (<"1)3) where the subcritical
pitchfork bifurcation indicates that divergence is possible, given enough perturbation, and
(2) the degree of softening increases thereafter (see Figure 1). Non-linear e!ects begin to
dominate the response for this higher-< range, since linear sti!ness begins to tend towards
vanishing, which occurs at <"3)33, the linear divergence threshold.

The second observation is that, for a "xed <, the modal content of the
frequency}response curves, see Figures 2}5, changes dramatically with u. Some
components of the response become unstable, while others remain stable for the same
speci"c values of u. The unstable components indicate that, in the parts of the
frequency}response curve concerned, the response is not periodic, signalling that it could be
quasiperiodic or chaotic. With increasing excitation amplitude up to a certain value, the
frequency}response curve becomes much more complex, as can be appreciated by
comparing Figures 2 and 4.



Figure 18. Non-oscillatory solutions without external excitation versus the non-dimensional #ow velocity <;
orthogonal modes: ==, stable non-oscillatory branches; }} }, unstable non-oscillatory branches; (a)
amplitude of the "rst longitudinal mode A

1,n
/h; (b) amplitude of the second longitudinal mode B

2,n
/h.

NONLINEAR DYNAMICS OF SHELLS: PART IV 665
The existence of (1) quasiperiodic, amplitude-modulated response, (2) period-3 (3¹),
period-5 (5¹) and period-9 (9¹) responses, and (3) chaos for su$ciently large (but not too
large) fI is con"rmed by the bifurcation diagrams of Figures 6 and 7. Signi"cantly, with
companion mode participation, the multi-¹ periodic windows vanish and are absorbed by
the quasiperiodic surrounding regions of the bifurcation diagram. These observations are
supported and con"rmed by time-traces, phase-plane diagrams, power spectra and
PoincareH maps. With companion mode participation the very interesting phenomenon of
the so-called &&blue sky catastrophe'' is observed for fI large enough (Figure 8), whereby
a very sudden, &&explosive'' or &&catastrophic'' change in the response occurs.

Comparing qualitatively the response without and with companion-mode participation,
the latter being the &&true'' response, the following observation is made. The presence of the
companion mode introduces a degree of fuzziness in the response, as may be seen
by comparing Figure 9(a,c,e,f) to Figure 10(a,c,e,g). This makes also clear the usefulness
of the companion-mode-free calculations: they help us to understand the more
complicated-looking results with companion mode participation.
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The "nal comment relates to the subcritical pitchfork bifurcation obtained in Part I for
the shell with #uid #ow but no mechanical forced excitation, extending over
1)31(<(3)33. It is shown in Figures 15 and 16 that, given enough forced excitation, the
system will jump for the stable (trivial) equilibrium, over the unstable branch, and onto the
higher, stable solution (buckled form). Furthermore, the route to this stable state is shown
to follow a helicoidally evolving deformation.

This concludes the tetralogy (Parts I}IV) on #ow-induced and mechanically forced
deformation/motion of a shell by means of the simple theory developed in Part I. What has
been found is quite important; however, what remains to be done is equally signi"cant and
extensive. The results obtained must be recon"rmed by calculations with several other sets
of system parameters and by experiments.
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